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Last lecture, we discussed the 1-D super-resolution of point-sources. 

Today, we turn to a more physical problem—one with an even longer history:

• The diffraction limit in optics (a.k.a. learning mixture of Airy disks)



The physics of diffraction
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When light from a point source passes through a small circular aperture, it does not produce a bright dot as 
an image, but rather a diffuse circular disc known as Airy disk

circular aperture diffraction pattern intensity



The physics of diffraction
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The Airy disk has the following normalized intensity function:

𝐼𝐼 𝑥𝑥 =
1
𝜋𝜋𝜎𝜎2

2𝐽𝐽1( ⁄𝑥𝑥 𝜎𝜎)
⁄𝑥𝑥 𝜎𝜎

2

where 𝐽𝐽1 is the Bessel function of the first kind, and 𝜎𝜎 is a spread parameter governed by physical properties 
(such as numerical aperture) that quantifies the degree of blur

• 𝐼𝐼 𝑥𝑥  can be interpreted as the infinitesimal probability of detecting a photon at 𝑥𝑥 (in quantum optics 
theory)



The physics of diffraction
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For >150 years, it has been widely believed that physics imposes fundamental limits to resolution

If two Airy disks are too close, the 
blur makes it impossible to 
distinguish them

Are there statistical/algorithmic 
limitations to how accurately we can 
estimate a mixture of Airy disks?



The diffraction limit
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In particular, what is the minimum separation?

1

Abbe

1.22

Rayleigh

0.94

Sparrow

1.03

Houston

1.02

Dawes

1.46

Buxton

2.44

Schuster

pairwise separation (× 𝜋𝜋𝜋𝜋)

Which, if any, of these criteria is the right one?



A persistent debate
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In 1879 Lord Rayleigh proposed a heuristic that is still widely used

“This rule is convenient on account of its simplicity and it is sufficiently accurate in

view of the necessary uncertainty as to what exactly is meant by resolution.”
Subsequently, many other refinements were proposed based on different sorts of arguments, with varying 
degrees of rigor

“It is obvious that the undulation condition should set an upper limit to the resolving 

power ... My own observations on this point have been checked by a number of friends

and colleagues.”
Carroll Sparrow, 1918  



A persistent debate
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Others pushed back on there being a diffraction limit at all

“It seems a little pedantic to put such precision into the resolving power formula … 

Actually, if sufficiently careful measurements of the exact intensity distribution over
the diffracted image can be made, the fact that two sources make the spot can be 

proved [regardless of separation].”
Richard Feynman, 1964 

Nevertheless, there is decades of empirical evidence that there actually does seem to be a limit to what we 
can resolve?

Can we put the diffraction limit on a rigorous foundation?



Learning mixture of Airy disks
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Setup:

• There are 𝑘𝑘 Airy disks centered at unknown points 𝝁𝝁1, … ,𝝁𝝁𝑘𝑘 ∈ ℝ2

• Density for the 𝑖𝑖-th Airy disk is 𝐼𝐼 𝒙𝒙 − 𝝁𝝁𝑖𝑖

• The minimum separation Δ ≔ min
𝑖𝑖≠𝑗𝑗∈ 𝑘𝑘

𝝁𝝁𝑖𝑖 − 𝝁𝝁𝑗𝑗

• We get access to i.i.d. samples from the distribution

𝜌𝜌 𝒙𝒙 = �
𝑖𝑖=1

𝑘𝑘

𝜆𝜆𝑖𝑖𝐼𝐼 𝒙𝒙 − 𝝁𝝁𝑖𝑖

• Goal: estimate 𝜇𝜇1, … , 𝜇𝜇𝐾𝐾

𝐼𝐼 𝒙𝒙 =
1
𝜋𝜋𝜎𝜎2

2𝐽𝐽1( ⁄𝒙𝒙 𝜎𝜎)
⁄𝒙𝒙 𝜎𝜎

2

𝜆𝜆𝑖𝑖 ≥ 0 and ∑𝑖𝑖 𝜆𝜆𝑖𝑖 = 1



Main result 1
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Theorem (Chen-Moitra ’20).

Given samples from a Δ-separated mixture of 𝑘𝑘 Airy disks where each relative intensity is at least 
𝜆𝜆, there is an algorithm that takes

poly ⁄𝑘𝑘𝑘𝑘 Δ 𝑘𝑘2 , ⁄1 𝜆𝜆 , ⁄1 𝜖𝜖

samples and learns within error 𝜖𝜖 with high probability

Remark.   For two Airy disks (the focus of the debate), there is no fundamental limitation to what can be 
resolved!



Main result 2
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When the number of centers is large there is a phase transition

Theorem (Chen-Moitra ’20).

• If the 𝑘𝑘 Airy disks are 1.53𝜋𝜋𝜋𝜋-separated, there is a polytime algorithm that takes
poly 𝑘𝑘, ⁄1 Δ , ⁄1 𝜆𝜆 , ⁄1 𝜖𝜖

samples and learns within error 𝜖𝜖 with high probability

• There are < 1.15𝜋𝜋𝜋𝜋-separated mixtures of 𝑘𝑘 Airy disks that require exp Ω 𝑘𝑘  samples to 
learn

Remark.    With any reasonable physical setup, there really is a fundamental limit to resolving many point 
sources



Interpretation
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Opposing views on the diffraction limit:

• In domains where there are few close-by sources (e.g. astronomy), it is possible to resolve 
below the diffraction limit

• In domains where there are many close-by sources (e.g. microscopy), diffraction imposes 
fundamental limit on resolution 



Visualizing the diffraction limit
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In 1-D, we know the precise threshold (Δ = 𝜋𝜋𝜋𝜋), the Abbe limit, and can visualize how resolution undergoes 
a phase transition 



Deconvolution
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Last lecture, we showed how to learn the locations and intensities of a 1-D Fourier signal 

𝑔𝑔 𝜔𝜔 = �
𝑗𝑗=1

𝑘𝑘

𝑢𝑢𝑗𝑗𝑒𝑒2𝜋𝜋𝐢𝐢𝑓𝑓𝑗𝑗𝜔𝜔

• Diffracted image:

• Its Fourier transform:

where 𝐼𝐼 𝝎𝝎 = 2
𝜋𝜋

arccos 𝜋𝜋𝜋𝜋 𝝎𝝎 − 𝜋𝜋𝜋𝜋 𝝎𝝎 1 − 𝜋𝜋2𝜎𝜎2 𝝎𝝎 2

𝜌𝜌 𝒙𝒙 = �
𝑗𝑗=1

𝑘𝑘

𝜆𝜆𝑗𝑗𝐼𝐼(𝒙𝒙 − 𝝁𝝁𝑗𝑗)

�𝜌𝜌 𝝎𝝎 = �
𝑗𝑗=1

𝑘𝑘

𝜆𝜆𝑗𝑗𝐼𝐼 𝝎𝝎 𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑗𝑗,𝝎𝝎

= 4𝜋𝜋𝜎𝜎2 ⋅ 1𝐵𝐵 𝑟𝑟 𝝎𝝎 ⋆ 1𝐵𝐵 𝑟𝑟 𝝎𝝎  with 𝑟𝑟 = 1
2𝜋𝜋𝜋𝜋

𝑟𝑟

𝝎𝝎

2-D convolution:



Deconvolution via division
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• The support of 𝐼𝐼 𝝎𝝎  is 𝐵𝐵 1
𝜋𝜋𝜋𝜋

   (wlog, assume 𝜎𝜎 = ⁄1 𝜋𝜋)

• Thus, for 𝝎𝝎 ∈ ℝ2 with 𝝎𝝎 ≤ 1, we can simulate the 2-D Fourier signal:

𝑔𝑔 𝝎𝝎 ≔
�𝜌𝜌 𝝎𝝎
𝐼𝐼 𝝎𝝎

= �
𝑗𝑗=1

𝑘𝑘

𝜆𝜆𝑗𝑗𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑗𝑗,𝝎𝝎

• We only get samples from 𝜌𝜌 𝒙𝒙 . How to get access to �𝜌𝜌 𝝎𝝎 ?

�𝜌𝜌 𝝎𝝎 ≈
1
𝑁𝑁
�
𝑖𝑖

cos 2𝜋𝜋 𝝎𝝎,𝒙𝒙𝑖𝑖

• 𝔼𝔼𝒙𝒙∼𝜌𝜌 cos 2𝜋𝜋 𝝎𝝎,𝒙𝒙 = ℜ 𝔼𝔼𝒙𝒙∼𝜌𝜌 𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝎𝝎,𝒙𝒙 = ℜ �𝜌𝜌 𝝎𝝎 = �𝜌𝜌 𝝎𝝎



2-D super-resolution
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Setup:

• Given access to measurements with 𝝎𝝎 < 1:

𝑔𝑔(𝝎𝝎) = �
𝑗𝑗=1

𝑘𝑘

𝜆𝜆𝑗𝑗𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑗𝑗,𝝎𝝎 + 𝜂𝜂𝝎𝝎

• Goal: recover 𝝁𝝁𝑗𝑗 , 𝜆𝜆𝑗𝑗 𝑗𝑗∈ 𝑘𝑘

Two regimes:

• 𝑘𝑘 is constant.    Reduce to two 1-D super-resolution instances and piece the estimates together

• 𝑘𝑘 is large and well-separated (Δ > 1.53). Tensor-decomposition-based algorithm



2-D super-resolution: constant 𝑘𝑘
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Projection to 1-D:

1.  Sample a unit vector 𝒗𝒗 ∈ ℝ2

2.  𝑔𝑔 𝑙𝑙 𝒗𝒗
4𝑘𝑘

= ∑𝑗𝑗=1𝑘𝑘 𝜆𝜆𝑗𝑗𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑗𝑗,𝒗𝒗∕ 4𝑘𝑘 𝑙𝑙 + 𝜂𝜂𝑙𝑙 = ∑𝑗𝑗=1𝑘𝑘 𝜆𝜆𝑗𝑗𝑒𝑒−2𝜋𝜋𝐢𝐢𝑓𝑓𝑗𝑗𝑙𝑙 + 𝜂𝜂𝑙𝑙 
 for 𝑙𝑙 = 0,1, … ,2𝑘𝑘 − 1

3.  Run ESPRIT to recover 𝜆𝜆𝑗𝑗′ , 𝑓𝑓𝑗𝑗′ 𝑗𝑗∈ 𝑘𝑘

4.  Repeat 1-3 and obtain 𝜆𝜆𝑗𝑗′′, 𝑓𝑓𝑗𝑗′′ 𝑗𝑗∈ 𝑘𝑘

𝜂𝜂𝑙𝑙 ≤
𝜂𝜂

𝐼𝐼 ⁄𝑙𝑙 4𝑘𝑘

𝐼𝐼 𝑥𝑥



2-D super-resolution: constant 𝑘𝑘
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Piece together the 1-D estimates:

𝒗𝒗1
1 𝒗𝒗2

1

𝒗𝒗1
2 𝒗𝒗2

2

𝝁𝝁𝑗𝑗 1
𝝁𝝁𝑗𝑗 2

=
𝑓𝑓𝑗𝑗′

𝑓𝑓𝑗𝑗′′

The noise-stability of ESPRIT depends on the condition number of the Vandermonde matrix:

𝑉𝑉𝑘𝑘 =
𝑧𝑧10 ⋯ 𝑧𝑧𝑘𝑘0
⋮ ⋱ ⋮

𝑧𝑧1𝑘𝑘−1 ⋯ 𝑧𝑧𝑘𝑘𝑘𝑘−1
 where 𝑧𝑧𝑗𝑗 ≔ 𝑒𝑒−2𝜋𝜋𝐢𝐢𝑓𝑓𝑗𝑗

• The locations are gapless: Δ′ ≔ min
𝑖𝑖≠𝑗𝑗

𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑗𝑗 = min
𝑖𝑖≠𝑗𝑗

⁄𝝁𝝁𝑖𝑖 − 𝝁𝝁𝑗𝑗 ,𝒗𝒗 4𝑘𝑘 ∼ ⁄Δ 𝑘𝑘
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𝑉𝑉𝑘𝑘 =
𝑧𝑧10 ⋯ 𝑧𝑧𝑘𝑘0
⋮ ⋱ ⋮

𝑧𝑧1𝑘𝑘−1 ⋯ 𝑧𝑧𝑘𝑘𝑘𝑘−1
 where 𝑧𝑧𝑗𝑗 ≔ 𝑒𝑒−2𝜋𝜋𝐢𝐢𝑓𝑓𝑗𝑗

• For any unit vector 𝜆𝜆 ∈ ℂ𝑘𝑘,

𝑉𝑉𝑘𝑘𝜆𝜆 2 = �
𝑙𝑙=0

𝑘𝑘−1

�
𝑗𝑗=1

𝑘𝑘

𝜆𝜆𝑗𝑗𝑧𝑧𝑗𝑗𝑙𝑙
2

≤ 𝑘𝑘2

Thus, 𝜎𝜎max 𝑉𝑉𝑘𝑘 ≤ 𝑘𝑘

• For 𝜎𝜎min 𝑉𝑉𝑘𝑘 , we have

𝜎𝜎min 𝑉𝑉𝑘𝑘 ≥ ��
𝑖𝑖

𝜎𝜎𝑖𝑖 𝑉𝑉𝑘𝑘 𝜎𝜎max 𝑉𝑉𝑘𝑘
𝑘𝑘−1 ≥ ⁄det 𝑉𝑉𝑘𝑘 𝑘𝑘𝑘𝑘−1

det 𝑉𝑉𝑘𝑘 = �
𝑖𝑖<𝑗𝑗

𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗 ≥ 𝑒𝑒2𝜋𝜋𝐢𝐢Δ′ − 1
𝑘𝑘
2 ≥ Δ′ ⁄𝑘𝑘 𝑘𝑘−1 2

• Thus, 𝜅𝜅 𝑉𝑉𝑘𝑘 ≤ 𝑘𝑘𝑘𝑘 Δ′ −𝑘𝑘2 ∼ ⁄Δ 𝑘𝑘 𝑘𝑘2



Recap: phase transition of Vandermonde condition 
number
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In last lecture, we showed that the condition number of 𝑉𝑉𝑛𝑛 𝒛𝒛  exhibits a sharp phase transition:

• If 𝑛𝑛 > 1
Δ

+ 1, then 𝜅𝜅 𝑉𝑉𝑛𝑛 𝒛𝒛 ≤ 𝑛𝑛−1+ ⁄1 Δ
𝑛𝑛−1− ⁄1 Δ

• If 𝑛𝑛 < 1 − 𝜖𝜖 1
Δ

, then 𝜅𝜅 𝑉𝑉𝑛𝑛 𝒛𝒛 = 2Ω 𝜖𝜖𝜖𝜖  in the worst-case

That is, if we use sufficiently high-frequency measurements, we can always estimate the locations with high-
accuracy in 1-D

In the Airy disk case, we only get 𝜅𝜅 𝑉𝑉𝑘𝑘 ≤ 𝑘𝑘𝑘𝑘 Δ′ −𝑘𝑘2, which means the noise 𝜂𝜂𝝎𝝎 ≤ 𝑘𝑘−𝑘𝑘 Δ′ 𝑘𝑘2, i.e. 
exponentially many samples are needed

Can we get a better bound here?



1-D projection will not work for large k
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1. The reduction from mixture of Airy disks to Fourier signal only works for small measurement 
frequencies, i.e., 𝝎𝝎 ≤ 1

→ 1-D projection has cut-off frequency ≤ 𝒪𝒪 1

2. There exists a 2-D configuration with min-separation Δ such that for every direction 𝒗𝒗, the 1-D 
projection has min-separation 𝒪𝒪 ⁄Δ 𝑘𝑘  

Always below the 1-D super-resolution limit!
2-D separation: Δ = 2 sin ⁄𝜋𝜋 𝑘𝑘 = Θ ⁄1 𝑘𝑘

1-D projection separation:

Δ′ = cos 𝜃𝜃 −
2𝜋𝜋
𝑘𝑘 𝑗𝑗 − cos 𝜃𝜃 −

2𝜋𝜋
𝑘𝑘 𝑗𝑗 + 1 = 𝒪𝒪 ⁄1 𝑘𝑘2



2-D super-resolution: large 𝑘𝑘
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• We sample random 2-D vectors 𝝎𝝎 1 , … ,𝝎𝝎 𝑚𝑚 ∼ 𝐵𝐵 𝑅𝑅  and 𝒗𝒗 ∼ 𝐵𝐵 ⁄1 2 − 𝑅𝑅

• Let 𝒗𝒗 1 = 1
2
𝒗𝒗 and 𝒗𝒗 2 = 𝒗𝒗

• Construct an order-3 tensor 𝑇𝑇 ∈ ℂ𝑚𝑚×𝑚𝑚×2

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 ≔ 𝑔𝑔 𝝎𝝎 𝑎𝑎 + 𝝎𝝎 𝑏𝑏 + 𝒗𝒗 𝒄𝒄 = �
𝑗𝑗=1

𝑘𝑘

𝜆𝜆𝑗𝑗𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑗𝑗,𝝎𝝎 𝑎𝑎 +𝝎𝝎 𝑏𝑏 +𝒗𝒗 𝒄𝒄

• 𝑇𝑇 has the following tensor decomposition:

𝑇𝑇 = �
𝑗𝑗=1

𝑘𝑘

𝑉𝑉𝑗𝑗 ⊗ 𝑉𝑉𝑗𝑗 ⊗ (𝜆𝜆𝑗𝑗𝑊𝑊𝑗𝑗)

where 𝑉𝑉𝑗𝑗 ≔ 𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑗𝑗,𝝎𝝎 𝑎𝑎

𝑎𝑎∈ 𝑚𝑚
∈ ℂ𝑚𝑚 and 𝑊𝑊𝑗𝑗 ≔ 𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑗𝑗,𝒗𝒗 1 𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑗𝑗,𝒗𝒗 2 ∈ ℂ2



2-D super-resolution: large 𝑘𝑘
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𝑉𝑉 =
𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁1,𝝎𝝎 1 ⋯ 𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑘𝑘,𝝎𝝎 1

⋮ ⋱ ⋮
𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁1,𝝎𝝎 𝑚𝑚 ⋯ 𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑘𝑘,𝝎𝝎 𝑚𝑚

∈ ℂ𝑚𝑚×𝑘𝑘

• We need to upper bound the condition number 𝜅𝜅 𝑉𝑉

• For any 𝜆𝜆 ∈ ℂ𝑘𝑘, we have

𝜆𝜆†𝑉𝑉†𝑉𝑉𝑉𝑉 = �
𝑎𝑎=1

𝑚𝑚

�
𝑗𝑗=1

𝑘𝑘

𝜆𝜆𝑗𝑗𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑗𝑗,𝝎𝝎 𝑎𝑎

2



2-D super-resolution: large 𝑘𝑘

September 26, 2025 23

𝑉𝑉 =
𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁1,𝝎𝝎 1 ⋯ 𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑘𝑘,𝝎𝝎 1

⋮ ⋱ ⋮
𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁1,𝝎𝝎 𝑚𝑚 ⋯ 𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑘𝑘,𝝎𝝎 𝑚𝑚

∈ ℂ𝑚𝑚×𝑘𝑘

• We need to upper bound the condition number 𝜅𝜅 𝑉𝑉

• For any unit vector 𝜆𝜆 ∈ ℂ𝑘𝑘, we have

𝔼𝔼𝝎𝝎 1 ,…,𝝎𝝎 𝑚𝑚 𝜆𝜆†𝑉𝑉†𝑉𝑉𝑉𝑉 = 𝑚𝑚�
𝐵𝐵 𝑅𝑅

�
𝑗𝑗=1

𝑘𝑘

𝜆𝜆𝑗𝑗𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑗𝑗,𝝎𝝎

2

𝑑𝑑𝑑𝑑 𝝎𝝎

• 𝑉𝑉𝑖𝑖: = 𝑘𝑘 and 𝑉𝑉𝑖𝑖:
†𝑉𝑉𝑖𝑖: = 𝑘𝑘

• By matrix Chernoff bound applied to the random matrices 𝑉𝑉1:
†𝑉𝑉1:, … ,𝑉𝑉𝑚𝑚:

† 𝑉𝑉𝑚𝑚:

Pr 𝑉𝑉†𝑉𝑉 − 𝔼𝔼 𝑉𝑉†𝑉𝑉 ≥ 𝑚𝑚𝑘𝑘𝑘𝑘 ≤ 𝑘𝑘𝑒𝑒−Ω 𝑡𝑡2

• Thus, 𝜆𝜆𝑉𝑉†𝑉𝑉𝜆𝜆 ∈ 𝔼𝔼 𝜆𝜆𝑉𝑉†𝑉𝑉𝑉𝑉 ± �𝒪𝒪 𝑚𝑚𝑘𝑘  with high probability
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Let 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 ∈ ℂ𝑘𝑘×𝑘𝑘 be independent, random, self-adjoint matrices satisfying:

𝔼𝔼 𝑋𝑋𝑖𝑖 = 0  and  𝑋𝑋𝑖𝑖 ≤ 𝑅𝑅

Define the variance proxy:

𝜎𝜎2 ≔ �
𝑖𝑖

𝑋𝑋𝑖𝑖2

Then, for any 𝑡𝑡 > 0,

Pr �
𝑖𝑖

𝑋𝑋𝑖𝑖 > 𝑡𝑡 ≤ 𝑑𝑑 ⋅ exp
− ⁄𝑡𝑡2 2

𝜎𝜎2 + ⁄𝑅𝑅𝑅𝑅 3
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Lemma.    We have

Ω Δ − 𝛾𝛾 ≤ �
𝐵𝐵 𝑅𝑅

�
𝑗𝑗=1

𝑘𝑘

𝜆𝜆𝑗𝑗𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑗𝑗,𝝎𝝎

2

𝑑𝑑𝑑𝑑 𝝎𝝎 ≤ 𝑘𝑘,

where Δ is the minimum separation of {𝝁𝝁𝑗𝑗}, 𝛾𝛾 ≔ 2𝑗𝑗0,1
𝜋𝜋

≈ 1.53, and 𝑅𝑅 ≔ 𝛾𝛾
𝛾𝛾+Δ

< 1
2

Upper bound:

�
𝐵𝐵 𝑅𝑅

�
𝑗𝑗=1

𝑘𝑘

𝜆𝜆𝑗𝑗𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑗𝑗,𝝎𝝎

2

𝑑𝑑𝑑𝑑 𝝎𝝎 ≤ 𝑘𝑘 𝜆𝜆 2 �
𝐵𝐵 𝑅𝑅

𝑑𝑑𝑑𝑑 𝝎𝝎 = 𝑘𝑘
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Lower bound:

�
𝐵𝐵 𝑅𝑅

�
𝑗𝑗=1

𝑘𝑘

𝜆𝜆𝑗𝑗𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑗𝑗,𝝎𝝎

2

𝑑𝑑𝑑𝑑 𝝎𝝎 = �
ℝ2

�
𝑗𝑗=1

𝑘𝑘

𝜆𝜆𝑗𝑗𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑗𝑗,𝝎𝝎

2
1
𝜋𝜋𝑅𝑅2

𝟏𝟏𝐵𝐵 𝑅𝑅 𝝎𝝎 𝑑𝑑𝝎𝝎

• As in the 1-D super-resolution, we’ll use a 2-D minorant for 𝜓𝜓 𝝎𝝎  

Gonçalves ’18: There exists a function 𝑀𝑀 𝜔𝜔  such that:

1.  𝑀𝑀 𝜔𝜔 ≤ 𝜓𝜓 𝝎𝝎 , i.e. it minorizes the ball

2.  supp �𝑀𝑀 𝑥𝑥 ⊂ 𝐵𝐵 Δ , i.e. it is smooth

3.  �𝑀𝑀 0 = Ω Δ − 𝛾𝛾 , i.e. it is a non-trivial approximation
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�
ℝ2

�
𝑗𝑗=1

𝑘𝑘

𝜆𝜆𝑗𝑗𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑗𝑗,𝝎𝝎

2

𝜓𝜓 𝝎𝝎 𝑑𝑑𝝎𝝎 ≥ ��
𝑗𝑗,𝑗𝑗′

𝜆𝜆𝑗𝑗′
∗ 𝜆𝜆𝑗𝑗𝑒𝑒

−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑗𝑗−𝝁𝝁𝑗𝑗′ ,𝝎𝝎 𝑀𝑀(𝝎𝝎)𝑑𝑑𝝎𝝎

�𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑗𝑗−𝝁𝝁𝑗𝑗′ ,𝝎𝝎 𝑀𝑀(𝝎𝝎)𝑑𝑑𝝎𝝎 = �𝑀𝑀 𝝁𝝁𝑗𝑗 − 𝝁𝝁𝑗𝑗′

• Since 𝝁𝝁𝑗𝑗 − 𝝁𝝁𝑗𝑗′ > Δ for 𝑗𝑗 ≠ 𝑗𝑗𝑗, we have �𝑀𝑀 𝝁𝝁𝑗𝑗 − 𝝁𝝁𝑗𝑗′ = 0

• Hence,

�
𝑗𝑗,𝑗𝑗′

𝜆𝜆𝑗𝑗′
∗ 𝜆𝜆𝑗𝑗 �𝑀𝑀 𝝁𝝁𝑗𝑗 − 𝝁𝝁𝑗𝑗′ = �𝑀𝑀 0 𝜆𝜆 2 = �𝑀𝑀 0 = Ω Δ − 𝛾𝛾

• Thus, ∫𝐵𝐵 𝑅𝑅 ∑𝑗𝑗=1𝑘𝑘 𝜆𝜆𝑗𝑗𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑗𝑗,𝝎𝝎 2
𝑑𝑑𝑑𝑑 𝝎𝝎 = Ω Δ − 𝛾𝛾

∎
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• Recall that by matrix Chernoff bound, w.h.p.

𝜆𝜆𝑉𝑉†𝑉𝑉𝑉𝑉 ∈ 𝔼𝔼 𝜆𝜆𝑉𝑉†𝑉𝑉𝑉𝑉 ± �𝒪𝒪 𝑚𝑚𝑘𝑘

• And we just proved that

𝑚𝑚 Δ− 𝛾𝛾 ≤ 𝔼𝔼 𝜆𝜆𝑉𝑉†𝑉𝑉𝑉𝑉 ≤ 𝑚𝑚𝑚𝑚

• Thus, the condition number can be upper-bounded by:

𝜅𝜅 𝑉𝑉 2 ≔
max
𝜆𝜆 =1

𝜆𝜆𝑉𝑉†𝑉𝑉𝑉𝑉

min
𝜆𝜆 =1

𝜆𝜆𝑉𝑉†𝑉𝑉𝑉𝑉
≤

𝑘𝑘
Δ − 𝛾𝛾
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Theorem (Chen-Moitra ’20).

For any 𝜖𝜖 > 0, let Δ ≔ 1 − 𝜖𝜖 ⋅ 𝛾𝛾𝜋𝜋𝜋𝜋 = 1 − 𝜖𝜖 ⋅ 4
3
𝜋𝜋𝜋𝜋. There exist two Δ-separated mixtures of 

𝑘𝑘 Airy disks that require exp Ω 𝜖𝜖 𝑘𝑘  samples to learn

 The key step is to construct Δ-separated 𝝁𝝁𝑗𝑗  and 𝝁𝝁𝑗𝑗′  such that:

�
𝑗𝑗=1

𝑘𝑘

𝑢𝑢𝑗𝑗𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑗𝑗,𝝎𝝎 −�
𝑗𝑗=1

𝑘𝑘

𝑢𝑢𝑗𝑗′𝑒𝑒
−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑗𝑗

′ ,𝝎𝝎

2

≤ 𝑒𝑒−Ω 𝜖𝜖 𝑘𝑘  ∀ 𝝎𝝎 ≤ 1
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• 𝝁𝝁𝑗𝑗 ≔ 𝜈𝜈𝑗𝑗1,𝑗𝑗2  𝑗𝑗1 + 𝑗𝑗2 even

• 𝝁𝝁𝑗𝑗′ ≔ 𝜈𝜈𝑗𝑗1,𝑗𝑗2  𝑗𝑗1 + 𝑗𝑗2 odd

0 1−1−2 2

3

2 3

𝜈𝜈𝑗𝑗1,𝑗𝑗2 ≔
Δ
2
⋅ 𝑗𝑗1, 3𝑗𝑗2

𝑗𝑗1, 𝑗𝑗2 ∈ 𝒥𝒥 ≔ −
𝑘𝑘 − 1

2
, … ,

𝑘𝑘 − 1
2
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• Let ℓ = 4
𝜖𝜖
 , 𝑟𝑟 = 𝑘𝑘−1

2ℓ
= Θ 𝜖𝜖 𝑘𝑘 , and 𝑚𝑚 = 2

Δ

• Define

𝐻𝐻 𝝎𝝎 ≔ 𝐾𝐾ℓ𝑟𝑟
𝜔𝜔1
𝑚𝑚
−

1
2

⋅ 𝐾𝐾ℓ𝑟𝑟
3𝜔𝜔2
𝑚𝑚

−
1
2

 ∀ 𝝎𝝎 ∈ ℝ2

• Fourier transform:

�𝐻𝐻 𝒕𝒕 = �
𝑗𝑗1,𝑗𝑗2∈𝒥𝒥

𝑚𝑚2

3
𝑒𝑒−𝜋𝜋𝐢𝐢𝑚𝑚 𝑡𝑡1+ ⁄𝑡𝑡2 3 𝑎𝑎𝑗𝑗1𝑎𝑎𝑗𝑗2𝛿𝛿 𝑚𝑚𝑡𝑡1 − 𝑗𝑗1 𝛿𝛿 ⁄𝑚𝑚𝑡𝑡2 3 − 𝑗𝑗2

= �
𝑗𝑗1,𝑗𝑗2∈𝒥𝒥

−1 𝑗𝑗1+𝑗𝑗2𝑎𝑎𝑗𝑗1𝑎𝑎𝑗𝑗2𝛿𝛿 𝒕𝒕 − 𝜈𝜈𝑗𝑗1,𝑗𝑗2

= �
𝑗𝑗

𝑎𝑎𝑗𝑗1𝑎𝑎𝑗𝑗2𝛿𝛿(𝑡𝑡 − 𝝁𝝁𝑗𝑗) −�
𝑗𝑗

𝑎𝑎𝑗𝑗1𝑎𝑎𝑗𝑗2𝛿𝛿 𝑡𝑡 − 𝝁𝝁𝑗𝑗′

�𝐾𝐾ℓ𝑟𝑟 𝑗𝑗
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𝐻𝐻 𝝎𝝎 = � �𝐻𝐻 𝒕𝒕 𝑒𝑒2𝜋𝜋𝐢𝐢 𝝎𝝎,𝒕𝒕 𝑑𝑑𝒕𝒕 = �
𝑗𝑗

𝑎𝑎𝑗𝑗1𝑎𝑎𝑗𝑗2𝑒𝑒
2𝜋𝜋𝐢𝐢 𝝎𝝎,𝝁𝝁𝑗𝑗 −�

𝑗𝑗

𝑎𝑎𝑗𝑗1𝑎𝑎𝑗𝑗2𝑒𝑒
2𝜋𝜋𝐢𝐢 𝝎𝝎,𝝁𝝁𝑗𝑗

′

• Since 𝐾𝐾ℓ 𝜔𝜔 ≤ 1
4ℓ2𝜔𝜔2 for 𝜔𝜔 ∈ − ⁄1 2 , ⁄1 2 , we can show that

𝐻𝐻 𝝎𝝎 = 𝐾𝐾ℓ𝑟𝑟
𝜔𝜔1
𝑚𝑚
−

1
2

⋅ 𝐾𝐾ℓ𝑟𝑟
3𝜔𝜔2
𝑚𝑚

−
1
2

≤ exp −Ω 𝜖𝜖 𝑘𝑘  ∀ 𝝎𝝎 ≤ 1

• ∑𝑗𝑗 𝑢𝑢𝑗𝑗 + ∑𝑗𝑗 𝑢𝑢𝑗𝑗′ = ∑𝑗𝑗1,𝑗𝑗2 𝑎𝑎𝑗𝑗1𝑎𝑎𝑗𝑗2 = 1 and ∑𝑗𝑗 𝑢𝑢𝑗𝑗 + 𝑢𝑢𝑗𝑗′ = 𝐻𝐻 0 = 0

• Thus, 𝑢𝑢 1 = 𝑢𝑢′ 1 = Ω 1

• Hence, we have

�
𝑗𝑗=1

𝑘𝑘

𝑢𝑢𝑗𝑗𝑒𝑒−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑗𝑗,𝝎𝝎 −�
𝑗𝑗=1

𝑘𝑘

𝑢𝑢𝑗𝑗′𝑒𝑒
−2𝜋𝜋𝐢𝐢 𝝁𝝁𝑗𝑗

′ ,𝝎𝝎

2

≤ 𝑒𝑒−Ω 𝜖𝜖 𝑘𝑘  ∀ 𝝎𝝎 ≤ 1
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We explored algorithms and hardness results for learning mixtures of 1-D point sources and 
mixtures of 2-D Airy disks

Topic not covered: Sparse Fourier transform

• Goal: given access to 𝑥𝑥 ∈ ℂ𝑁𝑁, compute 𝑥𝑥 ≈ �𝑥𝑥

• ⁄ℓ2 ℓ2 guarantee:
𝑥𝑥 − �𝑥𝑥 2 ≤ 1 + 𝜖𝜖 min

𝑘𝑘−sparse �𝑥𝑥𝑘𝑘
�𝑥𝑥 − �𝑥𝑥𝑘𝑘 2

• SOTA results: �𝑂𝑂 𝑘𝑘  samples and �𝑂𝑂 𝑘𝑘  time (sublinear algorithms)

• Generalization: continuous signals, gapless signals (Fourier interpolation), structured signals, high-
dimensional SFT, …
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