CS 59300 — Algorithms for Data Science
Classical and Quantum approaches

Lecture 7 (09/25)
Super-resolution (|__| )

https:Ilruizhezhang.comlcoufse fall 2025.html
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Last lecture, we discussed the 1-D super-resolution of point-sources.

Today, we turn to a more physical problem—one with an even longer history:

- The diffraction limit in optics (a.k.a. learning mixture of Airy disks)
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The physics of diffraction

When light from a point source passes through a small circular aperture, it does not produce a bright dot as
an image, but rather a diffuse circular disc known as Airy disk

=

diffraction pattern

circular aperture intensity
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The physics of diffraction

The Airy disk has the following normalized intensity function:

A 4

[(x) =

1 (211(||x||/a))2

ma? \ lxll/o

where J; is the Bessel function of the first kind, and ¢ is a spread parameter governed by physical properties
(such as numerical aperture) that quantifies the degree of blur

I(x) can be interpreted as the infinitesimal probability of detecting a photon at x (in quantum optics
theory)
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The physics of diffraction

For >150 years, it has been widely believed that physics imposes fundamental limits to resolution

If two Airy disks are too close, the
blur makes it impossible to
distinguish them

Are there statistical/algorithmic
limitations to how accurately we can
estimate a mixture of Airy disks?
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The diffraction limit

In particular, what is the minimum separation?

Sparrow Abbe Dawes Houston Rayleigh Buxton Schuster

0.94 1 1.02 1.03 1.22 1.46 2.44

pairwise separation (X o)

Rayleigh (0.61 A/NA)
Abbe (0.50 A/NA)
—— Sparrow (0.47 A/NA)

Which, if any, of these criteria is the
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A persistent debate

In 1879 Lord Rayleigh proposed a heuristic that is still widely used

“
This rule is convenient on account of its simplicity and it is sufficiently accurate in

”
view of the necessary uncertainty as to what exactly is meant by resolution.

Subsequently, many other refinements were proposed based on different sorts of arguments, with varying
degrees of rigor

“
It is obvious that the undulation condition should set an upper limit to the resolving

power ... My own observations on this point have been checked by a number of friends

”
and colleagues.

Carroll Sparrow, 1918
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A persistent debate

Others pushed back on there being a diffraction limit at all

“
It seems a little pedantic to put such precision into the resolving power formula ...

Actually, if sufficiently careful measurements of the exact intensity distribution over
the diffracted image can be made, the fact that two sources make the spot can be

”
proved [regardless of separation].

Richard Feynman, 1964

Nevertheless, there is decades of empirical evidence that there actually does seem to be a limit to what we
can resolve?

Can we put the diffraction limit on a rigorous foundation?
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Learning mixture of Airy disks

Setup:

There are k Airy disks centered at unknown points iy, ..., ity € R?

2

1 (2];(lx|l/o
Density for the i-th Airy disk is I(x — ;) 1(x) = o2 ( 1||(x||/0 :
The minimum separation A = ig,léﬂ{] ||ﬂi — ﬂj”

We get access to i.i.d. samples from the distribution

K
p(x) = z Ad(x — ;)
i=1

Goal: estimate u, ..., Ug \

AL' ZOandZi)li =1
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Main result 1

Theorem (Chen-Moitra ’20).

Given samples from a A-separated mixture of k Airy disks where each relative intensity is at least
A, there is an algorithm that takes

poly ((ka/A)**,1/2,1/¢€)

samples and learns within error € with high probability

Remark. For two Airy disks (the focus of the debate), there is no fundamental limitation to what can be

resolved!
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Main result 2

When the number of centers is large there is a phase transition

Theorem (Chen-Moitra ’20).

- If the k Airy disks are 1.53mo-separated, there is a polytime algorithm that takes
poly(k,1/A,1/4,1/€)
samples and learns within error € with high probability

- There are < 1.15mo-separated mixtures of k Airy disks that require exp (Q(\/E)) samples to

learn

Remark. With any reasonable physical setup, there really is a fundamental limit to resolving many point

sources
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Interpretation

Opposing views on the diffraction limit:

- In domains where there are few close-by sources (e.g. astronomy), it is possible to resolve
below the diffraction limit

- In domains where there are many close-by sources (e.g. microscopy), diffraction imposes
fundamental limit on resolution
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Visualizing the diffraction limit

In 1-D, we know the precise threshold (A = ma), the Abbe limit, and can visualize how resolution undergoes
a phase transition

————
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Deconvolution

Last lecture, we showed how to learn the locations and intensities of a 1-D Fourier signal

Kk
g(@) = ) wemie
j=1
Kk
Diffracted image:
; p(0) = ) Hi(x—n))
j=1 2-D convolution:
Kk
Its Fourier transform: plw) = Z Aji(“’)e_zm(ﬂjm -
=
where [(w) =2 (arccos(nol|w|) — nollwlly1 - r202[wl?) .
n lol|

. 1
= 4-7'[0'2 . 1B(T')(w) * 1B(T‘)(w) Wlth T = %
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Deconvolution via division

The support of [(w) is B (n—la) (wlog, assume o = 1/m)

Thus, for w € R? with ||w]|| < 1, we can simulate the 2-D Fourier signal:

k
— plw) — p—2Ti(pj,w)
glw) =0 = ]_Zl%e g

We only get samples from p(x). How to get access to p(w)?

1
p(w) =+ ) cos(2m(w, x:))

i

Ex-p[cos@m{@, x))] = R(Ex-p[e 27 ?]) = R(p(@)) = p(w)
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2-D super-resolution

Setup:

Given access to measurements with ||w]|| < 1:
k
_ —2mi(u;,
g(w) =y He 2l 4 q,
=1

Goal: recover {(ﬂj' Aj)}je[k]

Two regimes:
k is constant. Reduce to two 1-D super-resolution instances and piece the estimates together

k is large and well-separated (A > 1.53). Tensor-decomposition-based algorithm
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2-D super-resolution: constant k

Projection to 1-D:

ml <
1. Sample a unit vector v € R? i = |f(l/4k)|

VY _ vk =2miu;,v/(4k))l — \V'k —2Tif ;l
5 g(lﬂ)_ jzllje mi(p;,v/(4k)) +771_Zj=1/1je Tif +

I
forl=0,1,..,2k—-1 2

3. Run ESPRIT to recover {(l{,ﬁ')}je[k]

4.  Repeat 1-3 and obtain {(l}';ﬁ”)}je[k]
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2-D super-resolution: constant k

Piece together the 1-D estimates:

o o[l 117
SR | (O i

The noise-stability of ESPRIT depends on the condition number of the Vandermonde matrix:

Z](i) eee Zl(g
Vi =1 : : where z; = e~ 2mMJ;
zk-1 zk-1

The locations are gapless: A’ := rgl]nm — f]| = rgtl]n |(ui — uj,v)|/4k ~ A/k
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4 zZp
Vi = : : where z; = e 2T |
Zf"l Z,I((_l
For any unit vector 1 € C,
k-1 k 2
2 _ ! 2
Wdll? = > |> 22l| <k
=0 |7=1

Thus, omax (Vi) < k

For opin (Vi ), we have

Imin (Vi) 2 (1_[ Ui(Vk)>/(Umax(Vk))k_1 > |det(Vy)|/k*1

l

k
|det(V)| = 1—[|Zi — Zj| > |eznm' _ 1|(2) > (A/)k(k—l)/z

<j

Thus, k() < k"‘(A')_k2 ~ (A/k)k2
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Recap: phase transition of Vandermonde condition
number

In last lecture, we showed that the condition number of ,,(z) exhibits a sharp phase transition:

n-1+1/A
n-1-1/A

1
fn >~ + 1, then k(V(2)) <

fn<(1—e¢) %, then k(V;,(z)) = 2%€k) in the worst-case

That is, if we use sufficiently high-frequency measurements, we can always estimate the locations with high-
accuracy in 1-D

In the Airy disk case, we only get k(V},) < k*(A)™*", which means the noise |n,,| < k™*(A)*", i.e.
exponentially many samples are needed

Can we get a better bound here?
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1-D projection will not work for large k

1. The reduction from mixture of Airy disks to Fourier signal only works for small measurement
frequencies, i.e., |lw| < 1

> 1-D projection has cut-off frequency < 0(1)

2. There exists a 2-D configuration with min-separation A such that for every direction v, the 1-D
projection has min-separation O(A/k)

/
Always below the 1-D super-resolution limit! &Q_\

N o

TN
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2-D super-resolution: large k

We sample random 2-D vectors @™, ..., ™ ~ B(R) andv ~ B(1/2 — R)

Let (D = %v and v® = v

Construct an order-3 tensor T € C™*™M*2

k
Tuve = g(@©@ + @® + p©) = Z A 5= 27i{11},0@ +o®) +(0))

T has the following tensor decomposition:

j=1

k
T=2V,QV 0 hW)

J=1

h V: == e_zni<”j'“’(a))
where V; = )ae[m]
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2-D super-resolution: large k

[ e—Zni(ul,w(l))

_e—Zni(ul,w(m))

e—Zni(uk,w(l)) ]

e —Zni(uk,w(m))

We need to upper bound the condition number k(V)

For any 1 € C¥, we have
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2-D super-resolution: large k

[ e —2mi(p,0™) . e —2mi{pg,0™) |

_e—2ni(y1,w(m)) e—Zni(uk,w(m))_
We need to upper bound the condition number k(V)

For any unit vector 1 € C*, we have

k
E,» om[ATVTVa] =m Z e~ 2ol dy ()
B(R) |4

WVell = VE and ViV = k
By matrix Chernoff bound applied to the random matrices Vf:Vl:, e V,f;:Vm:
Pr[[|[VTV — E[ViV]| = vmkt] < ke )

Thus, AVTVA € E[AVTVA]| £ O(ymk) with high probability
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Interlude: Matrix Chernoff (Bernstein) bound

Let X4, ..., X,, € C**¥ be independent, random, self-adjoint matrices satisfying:

E[X;] =0 and || X;|]| <R

Define the variance proxy:

0% = ”z X7
i

Then, forany t > 0,

Pr >t

—t?/2
=4 eXP\ Gz T Re/3

S

i
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2-D super-resolution: large k

Lemma. We have

K
QA -7) < j z Aje-zﬂiww) dy(w) <k,
B(R) |7=1
: i : — 2jo,1 Y 1
where A is the minimum separation of {y;}, ¥ := R 1.53,and R = Y <3

Upper bound:

2

k
j Ezje—zvﬁww) dy(w) < k|22 j dip(w) = k
B(R) [

B(R)
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2-D super-resolution: large k

Lower bound:

v[B(R)

k
Z Aje—Zni(uj,w)
j=1

2

dp(w) = [

]RZ

k
z Aje—Znimj,w)
j=1

As in the 1-D super-resolution, we’ll use a 2-D minorant for y/(w)

Goncalves “18: There exists a function M (w) such that:

1. M(w) < Y(w),i.e.it minorizes the ball

2. supp (M(x)) c B(A), i.e. itis smooth

3. M(0) = Q(A-7),
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2-D super-resolution: large k

J.

k
2 —27t1 u]

2

Y(w)dw = j Za;,zje‘Z”i<”f‘”f"“’> M(w)dw
7

j 8‘2”i<”f_”j"“’>1\/[(w)dw — M(ﬂj — ”j’)

Since ||[,¢j — [,tjr” > Aforj # j', we have 1\77(;1]- — [,ljr) =0

Hence,

> A (- ) = HOIAIR = () = 04 - 7)

JiJ’

. 2 _
Thus, [ s o209 dy(w) = a8 - 7)
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2-D super-resolution: large k

Recall that by matrix Chernoff bound, w.h.p.
AVIVA € E[AVTVA] £ O(Ymk)
And we just proved that
m(A —y) < E[AVTVA] < mk
Thus, the condition number can be upper-bounded by:

”r}llllax1|/1VTV/l| I
V)2 = 122 < —
(V) ”r/{hipll/WTV/ll T A-Y
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Diffraction limit

Theorem (Chen-Moitra ’20).

Foranye > 0,letA:=(1—¢) - yno=(1—¢€) - \/éna. There exist two A-separated mixtures of

k Airy disks that require exp (Q(E\/F)) samples to learn

> The key step is to construct A-separated {uj} and {u;} such that:

2

k
_ 2
E u;e 2mi(p 0 E uje & ”’ < e~ (evk) Viw| <1

j=1 j=1
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Diffraction limit: construction

A
Vinjs = 5+ (1 V3)2)

vk —1 x/E—1}
e

j1'j2 € (7 = {_

- {ui} = 1{vj,j, | j1 +J2 even]

- i} =V, |1 +J2 0dd]
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Diffraction limit: construction | |

4 Vk-1 2
let £ =~,r=~—>=0(evk), andm = 7 P O — | —
Define
w1 1 \/§0)2 1)
H(w) =Kl [ —-= -K’”( —~] VeweR?
(w) ¢ (m 2) '\ m 2
Fourier transform: @”(j)

2
Py m -
H(t) — z 3 e_nlm(t1+t2/\/§)aj1aj25(mt1 _]1)5(mt2/\/§ _]2)
jl!jZEJ

= Z (D))" 2a5,0;,6(t = v, j,)

jl!jZEJ

= Z aj,@;,0(t = Hj) — Z aj,a;,8(t — 1)
i j

J
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Diffraction limit

H((D) = J H(t)82ﬂi<w,t>dt — Z aj1 ajZBZTEi(w,ﬂj) . Z ajl aj282ﬂi<w,uj>

J J

forw € [—1/2,1/2], we can show that
W1 V3w, 1
K; <E_§> K{)< — 2) < exp (—Q(E\/F))

2 |uJ| +Z | | = J1Jzaf1af2 = 1andzjuj +u; = H(0) =0
Thus, [[ull; = [[u'[l; = Q(1)

Since K,(w) <

1/022

|H(w)| =

Hence, we have

k
D wye 2l Z“e_zm”’ <e R v

j=1 j=1
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Recap

We explored algorithms and hardness results for learning mixtures of 1-D point sources and
mixtures of 2-D Airy disks

Topic not covered: Sparse Fourier transform

Goal: given access to x € CV, compute ¥ = %

¢, /¥, guarantee:

X =%l < (1 +e€) min _[[x— %l
k—sparse Xy

SOTA results: O (k) samples and O (k) time (sublinear algorithms)

Generalization: continuous signals, gapless signals (Fourier interpolation), structured signals, high-
dimensional SFT, ...
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